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ABSTRACT

The use of an optimal prefilter prior to sampling can
lead to reduced mean square error after reconstruction.
The form of the best prefilter or the associated local weight-
ing function depends upon the reconstruction method to be
used. We display and discuss these weightin g functions for
the most common sp l ine reconstruction metho ds.
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The purpose of this note is to indicate that the use

of the standard delta function filter for sampling is sub -

optimal when standard reconstruction techniques such as

nearest neighbor , linear ,or cubic spline interpolation are

used for signal approximation. The errors induced in re-

construction using these schemes have led to various suggest-

ed modifications of the reconstruction methods. Such modi-

fications are often impractical because of their computa-

tional complexity. This note points out that mean square

errors can be minimized by the use of a specific p~~filte r ,

i. e., by modifying the sampling technique.

The use of prefiltering to reduce reconstruction error

is not new. For example , it is known that the (L2-)

optimal prefilter for de lta sampling followed by (sinx)/x-

reconstruction is a low pass filter [1]. In the case where

the original signal is band - limited , exact reconstruction

is possible. However , in precision processing of digitized

images , for example , as well as in other signal processing

• applications , (sinx)/x interpolation is often considered

too costl y when interpo lated values are needed for geometric

I .~~ correction and dis play m agnification t2]. The usual inter-

polation schemes include nearest neighbor approximation ,

linear interpolation , and cubic spline interpolation , which

we may regard as sp ine interpolation schemes of orders

zero , one , and three respectively. The substitution of

spline interpolation for sinx/x reconstruction calls for a

new prefilter; despite this fact , most imaging systems

1
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- -  -- - - — - -  —~~~

‘8

• attempt to sample using a pure low pass filter followed by

delta-function sam pling. Indeed , restoration theories

attempt to correct for inaccuracies in this “ideal” sampling

• filte r , even in the case of schemes which represent ideal

reconstructions by cubic sp l ines [3].

The optimal prefilter for a given spline reconstruc-

tion scheme is the Fou rier transform of the optimal weight-

ing function. We will determine the optimal weighting

functions for the three aforementioned spline schemes

assuming infinitel y many equispaced knots (sampling points)

in one dimension. The problem is equivalent to that of

finding the best L2 sp line approximation to a given noise -

free function with fixed knots [4]. By using the 12 norm ,

we are led to a linear relationship between the sample

values fy 1 } used for reconstruction and the initial signal

f(x). This relationship is represented by the weighting

function g
~
, i. e .,

y
~ 

= J g j (x)f(x)dx (1)

We have assumed infinitely many sample points so as to

assure that the g 1 will all be translates of a single opti-

ma ] weighting function 9, which is the desired solution.

Extensions to the cases of finitely many points , higher

dimensions , and other linear reconstruction techniques are

straightforward , based on the same standard numerical

analysis approach used below , once the reconstruction method

is properly formulated.

2
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Denote by A the transformation which takes a sequence

H of samp le values {y 1 }~ into the inter polating sp l ine
i= -~

(or reconstructed function) s (x) with equispaced knots

located at points of the sequence . Suppose that

A restricted to square summable sequence s 
~ 

is a bounded

linear transfo rmation into L2(R). Then for a given func-

tion f c L2~ 
the sequence = {y~ } which minimizes

I IA; - f~ 1 2 can be shown to be a solut ion to the “normal

equation ”

(A*A); 
= A*f (2)

where A* is the adjoint transformation from (L2(R))* to

(Z2)*, i.e., from L2(R) to Provided A*A is nonsin gular ,

the optimal sample y
~ 

is a projection of the linear

operator (A*AY1A* operatin g on f , and thus the optimal

weighting function g 1 is the L2 dual element representin g

that functional. This establishes equation (1).

By energy conservat ion considerations ,

= 1 , and so in fact g 1 c L 1 (R). Thus g 1 (x) is

the optimal weighting function for general L~ (R) functions

for minimizing the un iformly averaged mean square error.

Finally, If A is cov ar lent with respect to rigid left and

right shifts of the samples -
~

‘

~~ ~~~ 
represented by

• s(x) -
~~ 
s(x#x k), then the weighting functions g 1 are indepen-

dent of I modu lo interval shifts, thus yielding a unique

3 
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optimal weighting function g(x).

For spline reconstruction , we have

s(x) = A; = ~~~y 1~~ (x), (3)

where the 4~ (x) are basis spline functions chosen to suit

the particular application. If we regard A as an infinite

matrix whose kth column is the function 
~k
(x), —~~~ < k <

and the variable x represents the row number , then A* = A T ,

and the i ,j entry of A*A is the value J 4 1 (x)~~ (x)dx. The

desired weighting function is then simply the ith row of

the matrix (A*A)~~’A* , which is the sp line generated by the

values {bjk }~ , where (b. .) = (A*A) ’.
k=— °~

It is customary to use B- spline basis functions for

the ~p 1 (x), which are shifts of the B-sp l ine basis functions

at zero (Figure 1). Since the B-splines are symmetric with

finite support , the resulting infinite matrix (A*A) is

banded with constant bands. For zero order splines , A*A

is simply the identity matrix. For linear splines , A *A is

infinite tridiagonal , with entry 1/6 in the codiagonals ,

and 2/3 in the dia gonal. For cubic splines , A*A has seven

nonzero bands , whose values , incidentally, correspond to

B7(x~ ), I = —3 , -2 , — l , 0, 1 , 2 , 3 , where B7 is the B—s pline

of order 7 centered at x 0.
In each case , A*A is invertible , so that we can solve

for the optimal samples 
~~~ 

used for reconstruction. How-

ever , for the cubic spl ine case , a special adjustment is

4
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needed. Because the cubic B -sp line has support three in-

terva ls wide , the value of the recons tructed spline at the

sample points is given by the formula

s(x
~
) = (l/6)y 1 ~ 

+ 
~~~~~~ 

+

Although these values {y1 } are useful for constructing s(x),

• since the cubic B-sp ine is easily computed , our usual

notion of sampling and interpolation requires that the

sample y.~ satisfy s(x 1 ) = y 1 . Indeed , y 1 should be close

to f(x 1 ), but not necessa rily equal due to the prefiltering.

This latter condition on the {y~ } is satisfied by the values

= C(A*A)~~A*f ,

where (4)

C = 1/6 2/3 1/6

for A obtained from the cubic B-sp ine. The weighting

functions are obtained from the rows of C(A*A )~~A* . The

spline s(x) can be reconst ructed from these modified samples

using the unique bounded cubic basis splines ‘Y
~
(x) satisfy-

ing ‘i’1 (x) = from the formula s(x) = 
~~~~~~~~ ?j(x). For

infinitely many equispaced points, the are all translates

of 
~~~~~~ 

shown in Figure 2. Even though the have infinite

support , they decay rapidly, so that the sum , to machine

5
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precision , is finite. In fact , we could use the ‘f’
~

’s to de-

fine A , in which case the adjustment using the matrix C is

unnecessary . However , using a cubic B-sp line to define A

assures that A*A will be easy to compute and will be banded.

In each case , the appropriate operators are cov ariant

with respect to shifts , so that we obtain unique optimal

weighting functions , shown in Figure 3. As expected , for

nearest neighbor approximation the optimal samples are

obtained from local unweighted block averages. The optimal

weighting functions for linear and cubic spline interpola-

tion are more surprising, despite the fact that an optimal

prefilter is a familiar concept. The functions are not

sp line approximations to (sinx)/x , since they decay exponen-

tially. The oscillator y behavior results from inverting

the positive matrix A*A , and is governed more by the con-

vergence of the partial quotients of a continued fraction

than by the function (sinx)/x [5]. Because the functions

in Figure 3 decay so rapidly, truncated versions with a

support radius of two or three intervals yield very nearly

the same optimal samples , which is often a distinct advant-

age over (sinx)/x wei ghting.

In any case , the observation that the weighting func-

tions behave qualitativel y like (sinx)/x is consistent

with the earlier result that (sinx)/x reconstruction calls

for low -pass prefiltering —- i.e. , a (sinx)/x weighting

function. Specifically, if we use basis functions

sin( rr /h ) (x_ x
~ 

)
= (rT /h)(x-x~)

6
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to define A in equation 3 , then we may solve (2) •to obtain

the classical weighting function for Shannon reconstruction.

Since (sinc * sinc)(x) = 71sinc(x), a fact which follows

from the Fourier equivalent rect 2(x) = rect(x), we obtain

(A*A) = hI , I the identity matrix. So the rows of (A*A)~~A*

are all translates of the classical low-pass weightin g

function

sin( ir /h)x
g(x) = 

~~
- .

• (ir /h)x

Error analysis shows that substantial reduction in

expected mean square error can be achieved by using the

appropriate prefilter from Figure 3 , as opposed to unfilter-

• ed delta sampling. For example , if the autocorrelation

function of the initial signal decays exponentiall y, and

the sampling is very fine , a 35% reduction in total ex-

pected mean square error can b .~ obLained by using optimal

sampling prior to linear reconstruction , as opposed to

normal delta sampling [5).

Implementation of these results involves construction

of the optimal sampling weighting functions for local inte-

gration , or their Fourier transforms for spectral filtering.

If on~ is resamp l ing finely sampled data to achieve com-

pression , and expects to use spline reconstruction , then

.ippropriate weights must be assigned to the values in the

neighborhood of the new sampling point. One can obtain

these weights by resolving the normal equations for quanti-

I, zed functions f , or by using approximations from the
‘:4 H
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continuous case.

To construct the linear weighting function of Figure

3b , one need only find the linear spline interpolatin g the

values of the central row of (A*A)~~ . Thus one must invert

an infinite tridiagonal matrix , which is an easy procedure

usin g the recursion formula:

b 0 = 

c 1 4c0/c 1 )
2-4

~~~1 
C

0
4 b 1 — - 

~~
-
~~

-— b 0,

b k+l = - (cO/c l )bk - b k l ~

where c0 is the entry in the diagonal , and Cl is the off

diagonal entry. In this case, c0 = 2/3 , and c 1 = 1/6.

The middle row of the inverse matrix i s

Because of overflow difficulties , in general one first

solves for Zk = b k/b k÷l when calculating the b 1 s [6]. In-

cidentall y, constructing the cubic basis function of

Figure 2 involves the same matrix inversion to obtain

second moments at the knots.

For the optimal sampling cubic weighting function

(Figure 3c), an infinite banded matrix with seven nonzero

bands must be inverted . Since the matrix is diagonally

dominant , finite versions of the matrix are easily inverted.

These , as it turns out , converge rapidly to the desired

8
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infinite version as the size is increased , due to the rapid

decay of the inverse matrix values. A more general in-

version techni que for thi s case would certainly be welcomed.

In both cases, however , to reconstruct the appropriate spline

weighting function , one need only store the few significant

nonzero values (b0,b 1 , b 2,b 3,...) corresponding to

g(x 0), g (x1 ),. . .  ,g (x 3) Since g is the appropriate

sp l ine interpolatin g these values , it can be obtained easily

from spline interpolation routines and a short table of

• previously computed values for

To summarize , we are recommending the substitution of

one of the wei ghting functi ons of Figure 3 for the standard

delta function samplin g meth od , whenever practical. Our

analysis and construction of these weighting functions

assumed the case of infinitely man y equispaced samples,

which permitted the presentation of the theory of optimal

prefiltering using the classical Banach spaces L 2 and

• • 
Since the resulting weighting functions decay rapidly, they

provide very nearly optimal samples for the finite case

everywhere except within two or three sample points of the

endpoints. In addition , their effectively narrow width

permits easy direct implementation of the local weighted

sum for sampling. Extension of this theory to sampling in

H several dimensions is straightforward , especially if the re-

• construction basis functions are separable in each variable.

Finally, the reconstructed function may be considerably

~ closer to the original function in the mean square sense if

one of the optimal prefilters is applied prior to sampling.

9
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